КЭС 2.15 Дискретные игры двух игроков с полной информацией. Построение дерева перебора вариантов, описание стратегии игры в табличной форме. Выигрышные и проигрышные позиции. Выигрышные стратегии

Задания линейки 19 ЕГЭ по информатике

2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

– убрать из кучи 3 камня;

– убрать из кучи 5 камней;

– уменьшить количество камней в куче в 4 раза (количество камней, полученное при делении, округляется до меньшего).

Например, из кучи в 20 камней за один ход можно получить кучу из 17, 15 или 5 камней.

Игра завершается, когда количество камней в куче становится не более 10. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу из 10 или менее камней. В начальный момент в куче было S камней, S ≥ 11.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 719FB2

Задание 20 8e224e

Задание 21 F4D519

Решение:

-3; -5; :4
Петя не может выиграть за один ход, если ни один из его ходов не приводит к куче с количеством камней ≤ 10. Это выполняется при S ≥ 44, так как:

  • S - 3 > 10 ⇒ S > 13,

  • S - 5 > 10 ⇒ S > 15,

  • округленное до меньшего(S/4) > 10 ⇒ S ≥ 44.

Таким образом, минимальное S, при котором Петя не может выиграть за один ход, равно 44.

При S = 44 после любого хода Пети Ваня может выиграть своим первым ходом:

  • Если Петя убирает 3 камня, куча становится 41 камнем. Нужно проверить, может ли Ваня сразу получить ≤ 10 из кучи в 41 камень. Ваня может применить ход "уменьшить в 4 раза": floor(41/4) = 10 ≤ 10, поэтому Ваня выигрывает.

  • Если Петя убирает 5 камней, куча становится 39 камней. Ваня может применить ход "уменьшить в 4 раза": floor(39/4) = 9 ≤ 10, поэтому Ваня выигрывает.

  • Если Петя уменьшает кучу в 4 раза, куча становится 11 камней. Ваня может убрать 3 камня и получить 8 ≤ 10, поэтому Ваня выигрывает.

Таким образом, при S = 44 Петя не может выиграть за один ход, но при любом ходе Пети Ваня выигрывает своим первым ходом.

Для S < 44 Петя может выиграть за один ход, например, при S = 43 Петя может уменьшить кучу в 4 раза и получить 10 камней, выиграв сразу.

Следовательно, минимальное значение S равно 44.

Ответ: 44

Номер: 719FB2

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 8e224e 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: -

Номер: F4D519 

ЕГЭ 2026. Демо
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

– убрать из кучи 3 камня;

– убрать из кучи 5 камней;

– уменьшить количество камней в куче в 4 раза (количество камней, полученное при делении, округляется до меньшего).

Например, из кучи в 20 камней за один ход можно получить кучу из 17, 15 или 5 камней.

Игра завершается, когда количество камней в куче становится не более 30. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу из 30 или менее камней. В начальный момент в куче было S камней, S ≥ 31.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

20. Для игры, описанной в задании 19, найдите два наименьших значения \(S,\) при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

  • Петя не может выиграть за один ход;
  • Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

21. Для игры, описанной в задании 19, найдите минимальное значение \(S,\) при котором одновременно выполняются два условия:

  • у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
  • у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Задание 19 AFBB84

Задание 20 e91774

Задание 21 148546

Решение:

-3; -5; :4
Петя не может выиграть за один ход при 31*4=124 камней. Если 123 и меньше, то при округлении вниз будет 30 и Петя выиграет. При этом, какой бы ход не выбрал Петя, Ваня выиграет либо сделав -5, либо :4.

Ответ: 124

Все 3 задачи на Python

def moves(h):
    return h - 3, h - 5, h // 4

def game_over(h):
    return h < 31

def win1(heap):
    return not game_over(heap) and any(game_over(m) for m in moves(heap))

def lose1(heap):
    return all(win1(m) for m in moves(heap))

def win2(heap):
    return not win1(heap) and any(lose1(m) for m in moves(heap))

def lose2(heap):
    return all(win1(m) or win2(m) for m in moves(heap)) \
            and any(win2(m) for m in moves(heap))

z19 = [S for S in range(31, 1000) if lose1(S)]
z20 = [S for S in range(31, 1000) if win2(S)]
z21 = [S for S in range(31, 1000) if lose2(S)]

print(min(z19))
print(z20[0], z20[1])
print(min(z21))

Ответ:
\(124\)
\(127 \,\, 128\)
\(132\)

Номер: AFBB84

20.10.2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

– убрать из кучи 2 камня;

– убрать из кучи 4 камня;

– уменьшить количество камней в куче в 4 раза (количество камней, полученное при делении, округляется до меньшего).

Например, из кучи в 20 камней за один ход можно получить кучу из 18, 16 или 5 камней.

Игра завершается, когда количество камней в куче становится не более 23. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу из 23 или менее камней. В начальный момент в куче было S камней, S ≥ 24.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 B75BBc

Задание 20 7c7DD5

Задание 21 103027

Решение:

-2; -4; :4
(23+1)*4=96
Ответ: 96

Номер: B75BBc

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 7c7DD5 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: -

Номер: 103027 

20.10.2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

– убрать из кучи 3 камня;

– убрать из кучи 7 камней;

– уменьшить количество камней в куче в 4 раза (количество камней, полученное при делении, округляется до меньшего).

Например, из кучи в 20 камней за один ход можно получить кучу из 17, 13 или 5 камней.

Игра завершается, когда количество камней в куче становится не более 15. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу из 15 или менее камней. В начальный момент в куче было S камней, S ≥ 16.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 B9e723

Задание 20 98B697

Задание 21 706e94

Решение:

-3; -7; :4
(15+1)*4=64
Ответ: 64

Номер: B9e723

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 98B697 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: -

Номер: 706e94

20.10.2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

– убрать из кучи 2 камня;

– убрать из кучи 4 камня;

– уменьшить количество камней в куче в 3 раза (количество камней, полученное при делении, округляется до меньшего).

Например, из кучи в 20 камней за один ход можно получить кучу из 18, 16 или 6 камней.

Игра завершается, когда количество камней в куче становится не более 17. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу из 17 или менее камней. В начальный момент в куче было S камней, S ≥ 18.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 16371A

Задание 20 B4e17e

Задание 21 cB6589

Решение:

-2; -4; :3
(17+1)*3=54
Ответ: 54

Номер: 16371A

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: B4e17e 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: -

Номер: cB6589

20.10.2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

– убрать из кучи 3 камня;

– убрать из кучи 8 камней;

– уменьшить количество камней в куче в 3 раза (количество камней, полученное при делении, округляется до меньшего).

Например, из кучи в 20 камней за один ход можно получить кучу из 17, 12 или 6 камней.

Игра завершается, когда количество камней в куче становится не более 16. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу из 16 или менее камней. В начальный момент в куче было S камней, S ≥ 17.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 712027

Задание 20 9D6eF1

Задание 21 0e2117

Решение:

-3; -8; :3
(16+1)*3=51
Ответ: 51

Номер: 712027

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 9D6eF1 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: -

Номер: 0e2117

20.05.2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 67.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 67 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 66.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 521F94

Задание 20 67484B

Задание 21 687734

Решение:

+1; +4; *3. Вопрос в том, какое число нужно *3, чтобы получилось меньше 67 камней, но максимально близко к этому значению.
67:3=22,(3)
Значит, если возьмем 22, то при *3 Петя НЕ выиграет (у него будет 66), а Ваня выиграет любым ходом.
Ответ: 22

var
  mv: array[1..500] of integer;
begin
  // Выигрышные позиции за 1 ход
  for var i := 1 to 66 do
    if (i * 3 >= 67) then mv[i] := 1; 
  // 19. Проигрышные позиции за 1 ход
  writeln('Задание 19');
  for var i := 1 to 66 do
    if (mv[i] = 0) and (mv[i + 1] = 1) and (mv[i + 4] = 1) and (mv[i * 3] = 1) then
      begin
        mv[i] := -1;
        write(i, ' ');
      end;   
  // 20. Выигрышные позиции за 2 хода
  writeln();
  writeln('Задание 20');
  for var i := 1 to 66 do
    if (mv[i] = 0) and ((mv[i + 1] = -1) or (mv[i + 4] = -1) or (mv[i * 3] = -1)) then 
      begin
        mv[i] := 2;
        write(i, ' ');
      end; 
  // 21. Проигрышные позиции за 2 хода
  writeln();
  writeln('Задание 21');
  for var i := 1 to 66 do
    if (mv[i] = 0) and (mv[i + 1] in [1..2]) and (mv[i + 4] in [1..2]) and (mv[i * 3] in [1..2]) then write(i, ' ');
end.

Ответ: 22

Номер: 521F94 

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: 18 21

Номер: 67484B 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

 у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

 у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: 17

Номер: 687734

22.01.2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 65. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах находится 65 или больше камней.

В начальный момент в первой куче было шесть камней, во второй куче – S камней; 1 ≤ S ≤ 58.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Задание 20 3AC768

Задание 21 021805

Решение:

2 кучи 6 к. и S к.; +1; *3; сумма 65 и больше
Берем самый крупный ход Пети и самый крупный Вани, потому что надо минимальное значение камней во второй куче.

Вариант 1. Если Петя сходит *3 к 6, получится 18, а Ваня *3=54. До 65 не хватает 11 -> это должна быть вторая куча.
Вариант 2. Если Петя *3 к S, то во второй куче получится S*3, да еще не забываем 6 в первой; а Ваня еще *3 ->
3S*3+6>=65 
9S>=61
S>=6,(7) -> округляем вверх, потому что знак >=, получим 7. Сомневаетесь в округлении? Сделайте проверку!
Проверим 7:
7*3+6=27 после хода Пети <65
21*3+6=69 после хода Вани >65
Проверим 6 на всякий случай:
6*3+6=24 после хода Пети <65
18*3+6=60 после хода Вани <65 - не подходит
7 меньше 11 из первого варианта, так что берем в ответ 7.
Ответ: 7

Номер: ED5E0C

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

–– Петя не может выиграть за один ход;

–– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: 10 19

Номер: 3AC768

21. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;
– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: 18

Номер: 021805

22.01.2025
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 38. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой находится 38 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 37.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 20 4E625B

Задание 21 DD29FA

Решение:

...
Ответ: 18

Номер: 3D5235 

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

–– Петя не может выиграть за один ход;

–– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: 9 17

Номер: 4E625B 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

  • у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
  • у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: DD29FA

22.10.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в два раза. У каждого игрока есть неограниченное количество камней, чтобы делать ходы.

Игра завершается в тот момент, когда количество камней в куче становится не менее 51.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой находится 51 камень или больше.

В начальный момент в куче было S камней; 1 ≤ S ≤ 50.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 20 AA777A

Задание 21 1ADFED

Решение:

...
Ответ: 25

Номер: BDBF1A 

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: 21 24

Номер: AA777A 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

–    у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

–    у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: 20

Номер: 1ADFED

22.10.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 81. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах находится 81 камень или больше.

В начальный момент в первой куче было семь камней, во второй куче – S камней; 1 ≤ S ≤ 73.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Задание 20 A8BD06

Задание 21 9F9ED6

Решение:

...
Ответ: 19

Номер: E8AF52 

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

 Петя не может выиграть за один ход;

 Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ:33 36

Номер: A8BD06 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: 32

Номер: 9F9ED6

22.10.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в два раза. У каждого игрока есть неограниченное количество камней, чтобы делать ходы.

Игра завершается в тот момент, когда количество камней в куче становится не менее 58.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой находится 58 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 57.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 20 C3FAFA

Задание 21 B239E4

Решение:

...
Ответ: 28

Номер: 35A49A 

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: C3FAFA 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

–    у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

–    у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: B239E4

22.10.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 66. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой находится 66 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 65.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 20 B9FC0F

Задание 21 334F31

Решение:

...
Ответ: 32

Номер: 0EE093 

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

–– Петя не может выиграть за один ход;

–– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: 16 31

Номер: B9FC0F 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: 30

Номер: 334F31

22.10.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 59. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах оказывается 59 или больше камней.

В начальный момент в первой куче было пять камней, во второй куче – S камней; 1 ≤ S ≤ 53.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, при котором такая ситуация возможна.

Задание 19 67E736

Задание 20 F7BE0F

Задание 21 EF6C0A

Решение:

...
Ответ: 14

Номер: 67E736 

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: F7BE0F 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

–    у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

–    у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе укажите наименьшее из них.

Решение:

...
Ответ: -

Номер: EF6C0A

22.10.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 69. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой находится 69 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 68.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите минимальное значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 20 95961D

Задание 21 46CCB6

Решение:

...
Ответ: ...

Номер: 98624A 

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

 Петя не может выиграть за один ход;

 Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 95961D 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

  у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

  у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: 32

Номер: 46CCB6

16.04.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 82.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 82 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 81.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 CD3364

Задание 20 913CFB

Задание 21 18D81B

Решение:

...
Ответ: ...

Номер: CD3364 

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 913CFB 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: 18D81B

16.04.2024 35881D
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 97.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 97 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 96.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 B9EFC2

Задание 20 57765C

Задание 21 56CF19

Решение:

...
Ответ: 32

Номер: B9EFC2 

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 57765C 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: 56CF19

16.04.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 103.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 103 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 102.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 17A122

Задание 20 0C8164

Задание 21 6AD74D

Решение:

...
Ответ: 34

Номер: 17A122 

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 0C8164 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: 6AD74D

16.04.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 73.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 73 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 72.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 95B916

Задание 20 1C8084

Задание 21 1E44F2

Решение:

...
Ответ: ...

Номер: 95B916 

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 1C8084 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: 1E44F2

16.04.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 91.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 91 или более камня.

В начальный момент в куче было S камней; 1 ≤ S ≤ 90.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 347707

Задание 20 6A3BC5

Задание 21 081D6F

Решение:

...
Ответ: 30

Номер: 347707

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 6A3BC5 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: 081D6F

16.04.2024
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 85.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 85 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 84.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 4B76F9

Задание 20 F9D117

Задание 21 BEFAA7

Решение:

...
Ответ: 28

Номер: 4B76F9

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: F9D117 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: BEFAA7

03.05.2023
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 55.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 55 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 54.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 930218

Задание 20 34D070

Задание 21 378927

Решение:

...
Ответ: 18

Номер: 930218

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 34D070 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: 378927

03.05.2023
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 43.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 43 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 42.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 DF917A

Задание 20 F7CD87

Задание 21 E4FD05

Решение:

def f(s,n):
    if s > 42:
        return n % 2 == 0
    if n == 0:
        return 0
    h = [f(s+1, n-1), f(s+4, n-1), f(s*3, n-1)]
    return any(h) if (n-1) % 2 == 0 else all(h) print([s for s in range(1,43) if f(s, 2)])

Ответ: 14

Номер: DF917A

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: F7CD87 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: -

Номер: E4FD05

03.05.2023
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 58.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, состоящую из 58 или более камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 57.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 CCBB06

Задание 20 0E813C

Задание 21 FFFBB1

Решение:

...
Ответ: ...

Номер: CCBB06 

20. Для игры, описанной в задании 19, найдите два таких минимальных значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 0E813C 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите наименьшее из них.

Решение:

...
Ответ: ...

Номер: FFFBB1

13.10.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня либо увеличить количество камней в куче в два раза. У каждого игрока есть неограниченное количество камней, чтобы делать ходы.

Игра завершается в тот момент, когда количество камней в куче становится не менее 443.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 443 камней или больше.

В начальный момент в куче было S камней; 1 ≤ S ≤ 442.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 DDB46F

Задание 20 491919

Задание 21 EF02C6

Решение:

...
Ответ: 221

Номер: DDB46F

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: 491919 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: -

Номер: EF02C6

13.10.2022 
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 133. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 133 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 132.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 4A6497

Задание 20 2B1766

Задание 21 5A88FF

Решение:

...
Ответ: 66

Номер: 4A6497

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

–– Петя не может выиграть за один ход;

–– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 2B1766 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: ...

Номер: 5A88FF

13.10.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 255. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 255 или больше камней.

В начальный момент в первой куче было 17 камней, во второй куче – S камней; 1 ≤ S ≤ 237.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Задание 19 9CA4DF

Задание 20 878E85

Задание 21 220D85

Решение:

...
Ответ: 60

Номер: 9CA4DF

20. Для игры, описанной в предыдущем задании, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 878E85 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: ...

Номер: 220D85

13.10.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или три камня либо увеличить количество камней в куче в два раза. У каждого игрока есть неограниченное количество камней, чтобы делать ходы.

Игра завершается в тот момент, когда количество камней в куче становится не менее 435.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 435 камней или больше.

В начальный момент в куче было S камней; 1 ≤ S ≤ 434.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом

Задание 19 CCA614

Задание 20 C6E2F6

Задание 21 1D96A7

Решение:

...
Ответ: 217

Номер: CCA614

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: C6E2F6 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: ...

Номер: 1D96A7

13.10.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 145. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 145 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 144.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 9555BE

Задание 20 4ED215

Задание 21 183130

Решение:

...
Ответ:

Номер: 9555BE

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:
– Петя не может выиграть за один ход;

– Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 4ED215 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: ...

Номер: 183130

13.10.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 129. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу из 129 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 128.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Задание 19 2123FC

Задание 20 D8C9FE

Задание 21 CAC378

Решение:

...
Ответ: 64

Номер: 2123FC

20. Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: D8C9FE 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: ...

Номер: CAC378

13.10.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 231. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 231 или больше камней.

В начальный момент в первой куче было 17 камней, во второй куче – S камней; 1 ≤ S ≤ 213.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Задание 19 7287EA

Задание 20 6D762A

Задание 21 4484BF

Решение:

...
Ответ: 54

Номер: 7287EA

20. Для игры, описанной в предыдущем задании, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

− Петя не может выиграть за один ход;

− Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 6D762A 

21. Для игры, описанной в задании 19, найдите минимальное значение S, при котором одновременно выполняются два условия:

– у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

– у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Решение:

...
Ответ: ...

Номер: 4484BF

06.03.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 5 камней, такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций: (11, 5), (20, 5), (10, 6),
(10, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 107. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 107 или больше камней.

В начальный момент в первой куче было 13 камней, во второй куче – S камней, 1 ≤ S ≤ 93.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Задание 19 796042

Задание 20 BC6B2D

Задание 21 68FCA2

Решение:

...
Ответ: 24

Номер: 796042

20. Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

- Петя не может выиграть за один ход;

- Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: BC6B2D 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

  • у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
  • у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

Решение:

...
Ответ: ...

Номер: 68FCA2

06.03.2022
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 5 камней, такую позицию в игре будем обозначать (10, 5). Тогда за один ход можно получить любую из четырёх позиций: (11, 5), (20, 5), (10, 6), (10, 10). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 107. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 107 или больше камней.

В начальный момент в первой куче было 13 камней, во второй куче – S камней, 1 ≤ S ≤ 93.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока - значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

Решение:

...
Ответ:

Номер: A347B2 

06.03.2022 D77CDF
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 49. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 49 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 48.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Решение:

...
Ответ: 24

Номер: 2C24A7

20. Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

-       Петя не может выиграть за один ход;

-       Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 79A190  

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

-       у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

-       у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

Решение:

...
Ответ: ...

Номер: E2850D

06.03.2022 2B23FD
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 29. Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 29 или больше камней.

В начальный момент в куче было S камней, 1 ≤ S ≤ 28.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Решение:

...
Ответ:

Номер: FB8AAF

20. Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

-       Петя не может выиграть за один ход;

-       Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: B4B268 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

-       у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

-       у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

Решение:

...
Ответ: ...

Номер: 5030FF

06.03.2022 3ED84D
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в два раза. Например, имея кучу из 12 камней, за один ход можно получить кучу из 13, 16 или 24 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 36.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 36 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 35.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Решение:

...
Ответ: 17

Номер: 5AB150

20. Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

-       Петя не может выиграть за один ход;

-       Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 08622F 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

-       у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

-       у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

Решение:

...
Ответ: ...

Номер: F738F0

06.03.2022 ACB07B
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в два раза. Например, имея кучу из 12 камней, за один ход можно получить кучу из 13, 16 или 24 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 35.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 35 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 34.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Решение:

...
Ответ: 17

Номер: 10FE25

20. Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

-       Петя не может выиграть за один ход;

-       Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 5E4903 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

-       у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

-       у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

Решение:

...
Ответ: ...

Номер: B60E41

06.03.2022 C64627
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в два раза. Например, имея кучу из 12 камней, за один ход можно получить кучу из 13, 16 или 24 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 27.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 27 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 26.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока – значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Решение:

...
Ответ: -

Номер: 401329

20. Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

-       Петя не может выиграть за один ход;

-       Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: -

Номер: C841AB 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

-       у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

-       у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

Решение:

...
Ответ: -

Номер: 37A9DA

06.03.2022 4C233B
19. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в два раза. Например, имея кучу из 12 камней, за один ход можно получить кучу из 13, 16 или 24 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 31.

Победителем считается игрок, сделавший последний ход, т.е. первым получивший кучу, в которой будет 31 камень или больше.

В начальный момент в куче было S камней; 1 ≤ S ≤ 30.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока –– значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т.е. не являющиеся выигрышными независимо от игры противника.

Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

Решение:

...
Ответ: 15

Номер: B3864F

20. Для игры, описанной в задании 19, найдите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

-       Петя не может выиграть за один ход;

-       Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Решение:

...
Ответ: ...

Номер: 8D8FAB 

21. Для игры, описанной в задании 19, найдите значение S, при котором одновременно выполняются два условия:

-       у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;

-       у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

Если найдено несколько значений S, в ответе запишите минимальное из них.

Решение:

...
Ответ: ...

Номер: 40A2E3