Задачи на совместную работу. Рабочие

Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Решение:

Возьмем за x производительность первого рабочего (деталей в час), тогда x-10 будет производительность второго. составим уравнение, решим его.
$\frac{60}{x-10}-\frac{60}x=3\\\frac{60x-60x-600}{x(x-10)}=3\\600=3x^2-30x\\3x^2-30x-600=0\\x^2-10x-200=0\\x1=\frac{10+\sqrt{10^2+4\ast200}}2=\frac{30+10}2=20\\x2=\frac{10-30}2=-10$
Берем положительный корень, то есть 20 дет в час
Ответ: 20 

8FBFD8

Первый рабочий за час делает на 6 деталей больше, чем второй, и выполняет заказ, состоящий из 140 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Решение:

Возьмем за x производительность первого рабочего (деталей в час), тогда x-6 будет производительность второго. составим уравнение, решим его.
$\frac{140}{x-6}-\frac{140}x=3\\\frac{140x-140x+840}{x(x-6)}=3\\840=3x^2-18x\\3x^2-18x-840=0\\x^2-6x-280=0\\x1=\frac{6+\sqrt{6^2+4\ast280}}2=\frac{6+34}2=20\\x2=\frac{6-34}2=-14$
Берем положительный корень, то есть 20 дет в час
Ответ: 20 

DF5EEA

Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 180 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Решение:

Возьмем за x производительность первого рабочего (деталей в час), тогда x-5 будет производительность второго. составим уравнение, решим его.
$\frac{180}{x-5}-\frac{180}x=3\\\frac{180x-180x-900}{x(x-5)}=3\\900=3x^2-15x\\3x^2-15x-900=0\\x^2-5x-300=0\\x1=\frac{5+\sqrt{5^2+4\ast300}}2=\frac{5+35}2=20$
х2=`(5-35)/2`=-15
Берем положительный корень, то есть 20 дет в час
Ответ: 20 

7DCBF1

Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 200 деталей, на 2 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Решение:

Возьмем за x производительность первого рабочего (деталей в час), тогда x-5 будет производительность второго. составим уравнение, решим его.
$\frac{200}{x-5}-\frac{200}x=2\\\frac{200x-200x+1000}{x(x-5)}=2\\1000=2x^2-10x\\2x^2-10x-1000=0\\x^2-5x-500=0\\x1=\frac{5+\sqrt{5^2+4\ast500}}2=\frac{5+45}2=25\\x2=\frac{5-45}2=-20$
Берем положительный корень, то есть 25 дет в час
Ответ: 25 

62EA5C

Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 216 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает первый рабочий?

Решение:

Возьмем за x производительность первого рабочего (деталей в час), тогда x-9 будет производительность второго. составим уравнение, решим его.
$\frac{216}{x-9}-\frac{216}x=4\\\frac{216x-216x+1944}{x(x-9)}=4\\1944=4x^2-36x\\4x^2-36x-1944=0\\x^2-9x-486=0\\x1=\frac{9+\sqrt{9^2+4\ast486}}2=\frac{9+45}2=27$
х2=`(9-45)/2`=-18
Берем положительный корень, то есть 27 дет в час
Ответ: 27 

3D0814


Первый рабочий за час делает на 10 деталей больше, чем второй, и выполняет заказ, состоящий из 60 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Решение:

Возьмем за x производительность второго рабочего (деталей в час), тогда x+10 будет производительность первого. составим уравнение, решим его.
$\frac{60}x-\frac{60}{x+10}=3\\\frac{60x+600-60x}{x(x+10)}=3\\600=3x^2+30x\\3x^2+30x-600=0\\x^2+10x-200=0\\x1=\frac{-10+\sqrt{10^2+4\ast200}}2=\frac{-10+30}2=10\\x2=\frac{-10-30}2=-20$
Берем положительный корень, то есть 10 дет в час
Ответ: 10

79B979

Первый рабочий за час делает на 5 деталей больше, чем второй, и выполняет заказ, состоящий из 180 деталей, на 3 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Решение:

Возьмем за x производительность второго рабочего (деталей в час), тогда x+5 будет производительность первого. составим уравнение, решим его.
$\frac{180}x-\frac{180}{x+5}=3\\\frac{180x+900-180x}{x(x+5)}=3\\900=3x^2+15x\\3x^2+15x-900=0\\x^2+5x-300=0\\x1=\frac{-5+\sqrt{5^2+4\ast300}}2=\frac{-5+35}2=15\\x2=\frac{-5-35}2=-20$
Берем положительный корень, то есть 15 дет в час
Ответ: 15

739910

Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 216 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Решение:

Возьмем за x производительность второго рабочего (деталей в час), тогда x+9 будет производительность первого. Составим уравнение, решим его.
$\frac{216}x-\frac{216}{x+9}=4\\\frac{216x+1944-216x}{x(x+9)}=4\\1944=4x^2+36x\\4x^2+36x-1944=0\\x^2+9x-486=0\\x1=\frac{-9+\sqrt{9^2+4\ast486}}2=\frac{-9+45}2=18\\x2=\frac{-9-45}2=-27$
Берем положительный корень, то есть 18 дет. в час
Ответ: 18

CFB70C

Первый рабочий за час делает на 13 деталей больше, чем второй, и выполняет заказ, состоящий из 208 деталей, на 8 часов быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Решение:

Возьмем за x производительность второго рабочего (деталей в час), тогда x+13 будет производительность первого. составим уравнение, решим его.
$\frac{208}x-\frac{208}{x+13}=8\\\frac{208x+2704-208x}{x(x+13)}=8\\2704=8x^2+104x\\8x^2+104x-2704=0\\x^2+13x-338=0\\x1=\frac{-13+\sqrt{13^2+4\ast338}}2=\frac{-13+39}2=13\\x2=\frac{-13-39}2=-26$
Берем положительный корень, то есть 13 дет в час
Ответ: 13

1D322C

Первый рабочий за час делает на 9 деталей больше, чем второй, и выполняет заказ, состоящий из 112 деталей, на 4 часа быстрее, чем второй рабочий, выполняющий такой же заказ. Сколько деталей в час делает второй рабочий?

Решение:

Возьмем за x производительность второго рабочего (деталей в час), тогда x+9 будет производительность первого. составим уравнение, решим его.
$\frac{112}x-\frac{112}{x+9}=4\\\frac{112x+1008-112x}{x(x+9)}=4\\1008=4x^2+36x\\4x^2+36x-1008=0\\x^2+9x-252=0\\x1=\frac{-9+\sqrt{9^2+4\ast252}}2=\frac{-9+33}2=12\\x2=\frac{-9-33}2=-21$
Берем положительный корень, то есть 12 дет в час
Ответ: 12

906A8D

Трубы

Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты быстрее, чем первая труба?

Решение:

Возьмем за x расход второй трубы (литров в минуту), тогда x-16 будет расход первой. Составим уравнение, решим его.
$\frac{105}{x-16}-\frac{105}x=4\\\frac{105x-105x+1680}{x(x-16)}=4\\1680=4x^2-64x\\4x^2-64x-1680=0\\x^2-16x-420=0\\x1=\frac{16+\sqrt{16^2+4\ast420}}2=\frac{16+44}2=30\\x2=\frac{16-44}2=-14$
Берем положительный корень, то есть 30 литров в минуту
Ответ: 30 

C9AB5E

Первая труба пропускает на 13 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 208 литров она заполняет на 8 минут быстрее, чем первая труба?

Решение:

Возьмем за x расход второй трубы (литров в минуту), тогда x-13 будет расход первой. Составим уравнение, решим его.
$\frac{208}{x-13}-\frac{208}x=8\\\frac{208x-208x+2704}{x(x-13)}=8\\2704=8x^2-104x\\8x^2-104x-2704=0\\x^2-13x-338=0\\x1=\frac{13+\sqrt{13^2+4\ast338}}2=\frac{13+39}2=26\\x2=\frac{13-39}2=-13$
Берем положительный корень, то есть 26 литров в минуту
Ответ: 26 

548E29

Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 100 литров она заполняет на 6 минут быстрее, чем первая труба?

Решение:

Возьмем за x расход второй трубы (литров в минуту), тогда x-15 будет расход первой. Составим уравнение, решим его.
$\frac{100}{x-15}-\frac{100}x=6\\\frac{100x-100x+1500}{x(x-15)}=6\\1500=6x^2-90x\\6x^2-90x-1500=0\\x^2-15x-250=0\\x1=\frac{15+\sqrt{15^2+4\ast250}}2=\frac{15+35}2=25\\x2=\frac{15-35}2=-10$
Берем положительный корень, то есть 25 литров в минуту
Ответ: 25 

44CB75

Первая труба пропускает на 9 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 112 литров она заполняет на 4 минуты быстрее, чем первая труба?

Решение:

Возьмем за x расход второй трубы (литров в минуту), тогда x-9 будет расход первой. Составим уравнение, решим его.
$\frac{112}{x-9}-\frac{112}x=4\\\frac{112x-112x+1008}{x(x-9)}=4\\1008=4x^2-36x\\4x^2-36x-1008=0\\x^2-9x-252=0\\x1=\frac{9+\sqrt{9^2+4\ast252}}2=\frac{9+33}2=21\\x2=\frac{9-33}2=-12$
Берем положительный корень, то есть 21 литров в минуту
Ответ: 21

2F4CBB

Первая труба пропускает на 3 литра воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает вторая труба, если резервуар объёмом 260 литров она заполняет на 6 минут быстрее, чем первая труба?

Решение:

Возьмем за x расход второй трубы (литров в минуту), тогда x-3 будет расход первой. Составим уравнение, решим его.
$\frac{260}{x-3}-\frac{260}x=6\\\frac{260x-260x+780}{x(x-3)}=6\\780=6x^2-18x\\6x^2-18x-780=0\\x^2-3x-130=0\\x1=\frac{3+\sqrt{3^2+4\ast130}}2=\frac{3+23}2=13\\x2=\frac{3-23}2=-10$
Берем положительный корень, то есть 21 литров в минуту
Ответ: 21

C6F82A

Первая труба пропускает на 6 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 140 литров она заполняет на 3 минуты дольше, чем вторая труба?

Решение:

Возьмем за x расход первой трубы (литров в минуту), тогда x+6 будет расход второй. Составим уравнение, решим его.
$\frac{140}x-\frac{140}{x+6}=3\\\frac{140x+840-140x}{x(x+6)}=3\\840=3x^2+18x\\3x^2+18x-840=0\\x^2+6x-280=0\\x1=\frac{6+\sqrt{-6^2+4\ast280}}2=\frac{-6+34}2=14\\x2=\frac{-6-34}2=-20$
Берем положительный корень, то есть 14 литров в минуту
Ответ: 14

18229A

Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 200 литров она заполняет на 2 минуты дольше, чем вторая труба?

Решение:

Возьмем за x расход первой трубы (литров в минуту), тогда x+5 будет расход второй. Составим уравнение, решим его.
$\frac{200}x-\frac{200}{x+5}=2\\\frac{200x+1000-200x}{x(x+5)}=2\\1000=2x^2+10x\\2x^2+10x-1000=0\\x^2+5x-500=0\\x1=\frac{-5+\sqrt{5^2+4\ast500}}2=\frac{-5+45}2=20\\x2=\frac{-5-45}2=-25$
Берем положительный корень, то есть 20 литров в минуту
Ответ: 20

16183A

Первая труба пропускает на 16 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 105 литров она заполняет на 4 минуты дольше, чем вторая труба?

Решение:

Возьмем за x расход первой трубы (литров в минуту), тогда x+16 будет расход второй. Составим уравнение, решим его.
$\frac{105}x-\frac{105}{x+16}=4\\\frac{105x+1680-105x}{x(x+16)}=4\\1680=4x^2+64x\\4x^2+64x-1680=0\\x^2+16x-420=0\\x1=\frac{-16+\sqrt{16^2+4\ast420}}2=\frac{-16+44}2=28\\x2=\frac{-16-44}2=-30$
Берем положительный корень, то есть 28 литров в минуту
Ответ: 28

D452EA

Первая труба пропускает на 15 литров воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 100 литров она заполняет на 6 минут дольше, чем вторая труба?

Решение:

Возьмем за x расход первой трубы (литров в минуту), тогда x+15 будет расход второй. Составим уравнение, решим его.
$\frac{100}x-\frac{100}{x+15}=6\\\frac{100x+1500-100x}{x(x+15)}=6\\1500=6x^2+90x\\6x^2+90x-1500=0\\x^2+15x-250=0\\x1=\frac{-15+\sqrt{15^2+4\ast250}}2=\frac{-15+35}2=10\\x2=\frac{-15-35}2=-25$
Берем положительный корень, то есть 10 литров в минуту
Ответ: 10

7565CB

Первая труба пропускает на 3 литра воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объёмом 260 литров она заполняет на 6 минут дольше, чем вторая труба?

Решение:

Возьмем за x расход первой трубы (литров в минуту), тогда x+3 будет расход второй. Составим уравнение, решим его.
$\frac{260}x-\frac{260}{x+3}=6\\\frac{260x+780-260x}{x(x+3)}=6\\780=6x^2+18x\\6x^2+18x-780=0\\x^2+3x-130=0\\x1=\frac{-3+\sqrt{3^2+4\ast130}}2=\frac{-3+23}2=10\\x2=\frac{-3-23}2=-13$
Берем положительный корень, то есть 10 литров в минуту
Ответ: 10

D7D54B