Ответы к странице 72

Задание 349

Решите задачу:
1) Co станции вышел товарный поезд со скоростью 50 км/ч. Через 3 ч с той же станции вслед за ним вышел электропоезд со скоростью 80 км/ч. Через сколько часов после своего выхода электропоезд догонит товарный поезд?
2) Самолёт вылетел с аэродрома со скоростью 500 км/ч. Через 2 ч с этого же аэродрома в том же направлении вылетел другой самолёт со скоростью 700 км/ч. Через сколько часов после вылета второй самолёт догонит первый?

Решение

1)
1) 50 * 3 = 150 (км) - проехал товарный поезд за 3 ч
2) 80 − 50 = 30 (км/ч) скорость электропоезда
3) 150 : 30 = 5 (ч) - время, через которое электропоезд догонит товарный поезд
Ответ: через 5 ч.

2) 500 − 2 : (700 − 500) = 1000 : 200 = 5 (ч) - время, через которое второй самолет догонит первый.
Ответ: через 5 ч.

Задание 350

Сравните числа:
а) 3,573 и 3,581;
б) 8,605 и 8,59;
в) 7,299 и 7,3;
г) 6,504 и 6,505;
д) 3,29 и 3,3;
е) 4,85 и 0,1.

Решение

а) 3,573 < 3,581

6) 8,605 > 8,59

в) 7,299 < 7,3

г) 6,504 < 6,505

д) 3,29 < 3,3

е) 4,85 > 0,1

Задание 351

Напишите все цифры, которые можно поставить вместо звёздочки, чтобы получилось верное неравенство:
а) 0,3 > 0,13;
б) 0,1 < 0,18;
в) 5,64 > 5,8;
г) 3,51 < 3,1;
д) 12,4 > 12,53;
е) 0,001 < 0,01.

Решение

а) 2; 3; 4; 5; 6; 7; 8; 9.

б) 0; 1; 2; 3; 4; 5; 6; 7.

в) 0; 1; 2; 3; 4; 5.

г) 6; 7; 8; 9.

д) 5; 6; 7; 8; 9.

е) 1; 2; 3; 4; 5; 6; 7; 8; 9.

Задание 352

Напишите число, меньшее 0,000001.

Решение

0,0000005 < 0,000001.

Задание 353

Примите за единичный отрезок длину десяти клеток тетради и отметьте на координатном луче точки:
А(0,7), В(1,2), С(1,8).

Решение

Задание 354

Разложите по разрядам 49008 и 67813742.

Решение

49008 = 40000 + 9000 + 8;
67813742 = 60000000 + 7000000 + 800000 + 10000 + 3000 + 700 + 40 + 2.

Задание 355

Выполните действия:
а) 11 2/7 + 4 3/7 − 6 4/7;
б) 26 7/19 − 13 4/19 + 5 2/19;
в) 44 2/9 + 8 5/9 − 7/9;
г) 5 7/10 + 3 9/10 + 1 3/10;
д) 3 17/100 − 2 13/100 − 1;
е) 8 − 4 31/100 − 2 57/100.

Решение

а) $11\frac27+4\frac37-6\frac47=11+4-6+\frac27+\frac37-\frac47=9+\frac17=9\frac17$

б) $26\frac7{19}-13\frac4{19}+5\frac2{19}=26-13+5+\frac7{19}-\frac4{19}+\frac2{19}=18+\frac5{19}=18\frac5{19}$

в) $44\frac29+8\frac59-\frac79=44+8+\frac29+\frac59-\frac79=52+0=52$

г) $5\frac7{10}+3\frac9{10}+1\frac3{10}=5+3+1+\frac7{10}+\frac9{10}+\frac3{10}=9+\frac{19}{10}=9+1\frac9{10}=9+1+\frac9{10}=10\frac9{10}$

д) $3\frac{17}{100}-2\frac{13}{100}-1=3-2-1+\frac{17}{100}-\frac{13}{100}=0+\frac4{100}=\frac4{100}$

е)$8-4\frac{31}{100}-2\frac{57}{100}=8-4-2-\frac{31}{100}-\frac{57}{100}=7-4-2+\frac{100}{100}-\frac{31}{100}-\frac{57}{100}=1+\frac{12}{100}=1\frac{12}{100}$

Задание 356

Два поезда вышли в разное время навстречу друг другу из двух городов, расстояние между которыми 782 км. Скорость первого поезда 52 км/ч, а второго 61 км/ч. Пройдя 416 км, первый поезд встретился со вторым. На сколько один из поездов вышел раньше другого?

Решение

1) 416 : 52 = 8 (ч) - находился в пути первый поезд до встречи
2) (782 − 416) : 61 = 366 : 61 = 6  (ч) - находился в пути второй поезд до встречи
3) 8 − 6 = на 2 (ч) - раньше вышел первый поезд, чем второй.
Ответ: на 2 ч.

Задание 357

С одной и той же станции в одно и то же время вышли в противоположных направлениях два поезда. Скорость одного поезда 50 км/ч, а скорость другого 85 км/ч. Через какое время расстояние между ними будет равно 540 км?

Решение

540 : (85 + 50) = 540 : 135 = 4 (ч) - время, через которое расстояние между ними будет равно 540 км
Ответ: через 4 ч.

Задание 358

Чтобы добраться из города до села, я проехал 5 ч на поезде, 2 ч на автобусе и 3 ч прошёл пешком. Скорость автобуса была 35 км/ч, скорость поезда вдвое больше скорости автобуса, а пешком я шёл со скоростью, на 65 км/ч меньшей, чем скорость поезда. Какой путь я проделал от города до села?

Решение

1) 2 * 35 = 70 (км/ч) - скорость поезда
2) 70 − 65 = 5 (км/ч) - скорость пешком
3) 70 * 5 + 35 * 2 + 5 * 3 = 350 + 70 + 15 = 435 (км) - путь от города до села
Ответ: 435 км.