Ответы к странице 177

710. Применяя теорему, обратную теореме Виета, определите, являются ли корнями уравнения:
1) $x^2 + 2x - 3 = 0$ числа 1 и −2;
2) $x^2 + 5x + 6 = 0$ числа −2 и −3.

Решение:

1) $x^2 + 2x - 3 = 0$
$x_1 = 1$
$x_2 = -2$
$x_1 + x_2 = -b = -2$
1 + (−2) = −2
−1 = −2 − неверно
$x_1x_2 = с = -3$
1 * (−2) = −3
−2 = −3 − неверно
Ответ: числа 1 и −2 не являются корнями уравнения

2) $x^2 + 5x + 6 = 0$
$x_1 = -2$
$x_2 = -3$
$x_1 + x_2 = -b = -5$
−2 + (−3) = −5
−5 = −5 − верно
$x_1x_2 = с = 6$
−2 * (−3) = 6
6 = 6 − верно
Ответ: числа −2 и −3 являются корнями уравнения

711. Найдите коэффициенты b и c уравнения $x^2 + bx + c = 0$, если его корнями являются числа:
1) −8 и 6;
2) 4 и 5.

Решение:

1) $x^2 + bx + c = 0$
$x_1 = -8$
$x_2 = 6$
$x_1 + x_2 = -b$
−8 + 6 = −b
−2 = −b
b = 2
$x_1x_2 = с$
−8 * 6 = c
c = −48
Ответ: b = 2; c = −48.

2) $x^2 + bx + c = 0$
$x_1 = 4$
$x_2 = 5$
$x_1 + x_2 = -b$
4 + 5 = −b
9 = −b
b = −9
$x_1x_2 = с$
4 * 5 = c
c = 20
Ответ: b = −9; c = 20.

712. Найдите коэффициенты b и c уравнения $x^2 + bx + c = 0$, если его корнями являются числа:
1) −2 и 0,5;
2) −10 и −20.

Решение:

1) $x^2 + bx + c = 0$
$x_1 = -2$
$x_2 = 0,5$
$x_1 + x_2 = -b$
−2 + 0,5 = −b
−1,5 = −b
b = 1,5
$x_1x_2 = с$
−2 * 0,5 = c
c = −1
Ответ: b = 1,5; c = −1.

2) $x^2 + bx + c = 0$
$x_1 = -10$
$x_2 = -20$
$x_1 + x_2 = -b$
−10 + (−20) = −b
−30 = −b
b = 30
$x_1x_2 = с$
−10 * (−20) = c
c = 200
Ответ: b = 30; c = 200.

713. Составьте квадратное уравнение с целыми коэффициентами, корни которого равны:
1) 2 и 5;
2) $-\frac{1}{3}$ и 2;
3) −0,2 и −10;
4) $2 - \sqrt{3}$ и $2 + \sqrt{3}$;
5) 0 и 6;
6) $-\sqrt{7}$ и $\sqrt{7}$.

Решение:

1) $x^2 + bx + c = 0$
$x_1 = 2$
$x_2 = 5$
$x_1 + x_2 = -b$
2 + 5 = −b
7 = −b
b = −7
$x_1x_2 = с$
2 * 5 = c
c = 10
$x^2 - 7x + 10 = 0$
Ответ: $x^2 - 7x + 10 = 0$

2) $x^2 + bx + c = 0$
$x_1 = -\frac{1}{3}$
$x_2 = 2$
$x_1 + x_2 = -b$
$-\frac{1}{3} + 2 = -b$
$-\frac{1}{3} + \frac{6}{3} = -b$
$\frac{5}{3} = -b$
$b = -\frac{5}{3}$
$x_1x_2 = с$
$-\frac{1}{3} * 2 = c$
$c = -\frac{2}{3}$
$x^2 - \frac{5}{3}x - \frac{2}{3} = 0$ |* 3
$3x^2 - 5x - 2 = 0$
Ответ: $3x^2 - 5x - 2 = 0$

3) $x^2 + bx + c = 0$
$x_1 = -0,2$
$x_2 = -10$
$x_1 + x_2 = -b$
−0,2 + (−10) = −b
−10,2 = −b
b = 10,2
$x_1x_2 = с$
−0,2 * (−10) = c
c = 2
$x^2 + 10,2x + 2 = 0$ |* 10
$10x^2 + 102x + 20 = 0$
Ответ: $10x^2 + 102x + 20 = 0$

4) $x^2 + bx + c = 0$
$x_1 = 2 - \sqrt{3}$
$x_2 = 2 + \sqrt{3}$
$x_1 + x_2 = -b$
$2 - \sqrt{3} + 2 + \sqrt{3} = -b$
$4 = -b$
$b = -4$
$x_1x_2 = с$
$(2 - \sqrt{3})(2 + \sqrt{3}) = c$
$c = 2^2 - (\sqrt{3})^2$
c = 4 − 3
c = 1
$x^2 - 4x + 1 = 0$
Ответ: $x^2 - 4x + 1 = 0$

5) $x^2 + bx + c = 0$
$x_1 = 0$
$x_2 = 6$
$x_1 + x_2 = -b$
0 + 6 = −b
6 = −b
b = −6
$x_1x_2 = с$
0 * 6 = c
c = 0
$x^2 - 6x + 0 = 0$
$x^2 - 6x = 0$
Ответ: $x^2 - 6x = 0$

6) $x^2 + bx + c = 0$
$x_1 = -\sqrt{7}$
$x_2 = \sqrt{7}$
$x_1 + x_2 = -b$
$-\sqrt{7} + \sqrt{7} = -b$
b = 0
$x_1x_2 = с$
$-\sqrt{7} * \sqrt{7} = c$
$c = -\sqrt{49}$
c = −7
$x^2 + 0x - 7 = 0$
$x^2 - 7 = 0$
Ответ: $x^2 - 7 = 0$

714. Составьте квадратное уравнение с целыми коэффициентами, корни которого равны:
1) −7 и −8;
2) 5 и −0,4;
3) $\frac{1}{2}$ и $\frac{2}{3}$;
4) $5 - \sqrt{10}$ и $5 + \sqrt{10}$;

Решение:

1) $x^2 + bx + c = 0$
$x_1 = -7$
$x_2 = -8$
$x_1 + x_2 = -b$
−7 + (−8) = −b
−15 = −b
b = 15
$x_1x_2 = с$
−7 * (−8) = c
c = 56
$x^2 + 15x + 56 = 0$
Ответ: $x^2 + 15x + 56 = 0$

2) $x^2 + bx + c = 0$
$x_1 = 5$
$x_2 = -0,4$
$x_1 + x_2 = -b$
5 + (−0,4) = −b
4,6 = −b
b = −4,6
$x_1x_2 = с$
5 * (−0,4) = c
c = −2
$x^2 - 4,6x - 2 = 0$ |* 10
$10x^2 - 46x - 20 = 0$
Ответ: $10x^2 - 46x - 20 = 0$

3) $x^2 + bx + c = 0$
$x_1 = \frac{1}{2}$
$x_2 = \frac{2}{3}$
$x_1 + x_2 = -b$
$\frac{1}{2} + \frac{2}{3} = -b$
$\frac{3}{6} + \frac{4}{6} = -b$
$\frac{7}{6} = -b$
$b = -\frac{7}{6}$
$x_1x_2 = с$
$\frac{1}{2} * \frac{2}{3} = c$
$c = \frac{1}{3}$
$x^2 - \frac{7}{6}x + \frac{1}{3} = 0$ |* 6
$6x^2 - 7x + 2 = 0$
Ответ: $6x^2 - 7x + 2 = 0$

4) $x^2 + bx + c = 0$
$x_1 = 5 - \sqrt{10}$
$x_2 = 5 + \sqrt{10}$
$x_1 + x_2 = -b$
$5 - \sqrt{10} + 5 + \sqrt{10} = -b$
10 = −b
b = −10
$x_1x_2 = с$
$(5 - \sqrt{10})(5 + \sqrt{10}) = c$
$c = 5^2 - (\sqrt{10})^2$
c = 25 − 10
c = 15
$x^2 - 10x + 15 = 0$
Ответ: $x^2 - 10x + 15 = 0$

715. Число −2 является корнем уравнения $x^2 - 8x + q = 0$. Найдите значение q и второй корень уравнения.

Решение:

$x^2 - 8x + q = 0$
$x_1 = -2$
$x_1 + x_2 = -b$
$-2 + x_2 = -(-8)$
$-2 + x_2 = 8$
$x_2 = 8 + 2$
$x_2 = 10$
$x_1x_2 = c = q$
−2 * 10 = q
q = −20
Ответ: q = −20, $x_2 = 10$.

716. Число 7 является корнем уравнения $x^2 + px - 42 = 0$. Найдите значение p и второй корень уравнения.

Решение:

$x^2 + px - 42 = 0$
$x_1 = 7$
$x_1x_2 = c$
$7x_2 = -42$
$x_2 = -6$
$x_1 + x_2 = -b = -p$
−p = 7 + (−6)
−p = 1
p = −1
Ответ: p = −1, $x_2 = -6$.

717. Число $\frac{1}{3}$ является корнем уравнения $6x^2 - bx + 4 = 0$. Найдите значение b и второй корень уравнения.

Решение:

$6x^2 - bx + 4 = 0$
$x_1 = \frac{1}{3}$
$x_1x_2 = \frac{c}{a}$
$\frac{1}{3}x_2 = \frac{4}{6}$
$x_2 = \frac{4}{6} : \frac{1}{3}$
$x_2 = \frac{2}{3} * 3$
$x_2 = 2$
$\frac{1}{3} + 2 = -\frac{b}{a}$
$\frac{1}{3} + 2 = -\frac{-b}{6}$ |* 6
2 + 12 = b
b = 14
Ответ: b = 14, $x_2 = 2$.

718. Число −0,2 является корнем уравнения $4x^2 - 5,6x + m = 0$. Найдите значение m и второй корень уравнения.

Решение:

$4x^2 - 5,6x + m = 0$
$x_1 = -0,2$
$x_1 + x_2 = -\frac{b}{a}$
$-0,2 + x_2 = -\frac{-5,6}{4}$
$-0,2 + x_2 = 1,4$
$x_2 = 1,4 + 0,2$
$x_2 = 1,6$
$x_1x_2 = \frac{c}{a} = \frac{m}{a}$
$-0,2 * 1,6 = \frac{m}{4}$
$\frac{m}{4} = -0,32$
m = −0,32 * 4
m = −1,28
Ответ: m = −1,28; $x_2 = 1,6$.

719. Известно, что $x_1$ и $x_2$ − корни уравнения $2x^2 - 7x - 13 = 0$. Не решая уравнение, найдите значение выражения $x_1x_2 - 4x_1 - 4x_2$.

Решение:

$2x^2 - 7x - 13 = 0$
$x_1 + x_2 = -\frac{b}{a}$
$x_1 + x_2 = -\frac{-7}{2}$
$x_1 + x_2 = 3,5$
$x_1x_2 = \frac{c}{a}$
$x_1x_2 = \frac{-13}{2}$
$x_1x_2 = -6,5$
$x_1x_2 - 4x_1 - 4x_2 = x_1x_2 - 4(x_1 + x_2) = -6,5 - 4 * 3,5 = -6,5 - 14 = -20,5$
Ответ: −20,5

720. Известно, что $x_1$ и $x_2$ − корни уравнения $5x^2 + 4x - 13 = 0$. Не решая уравнение, найдите значение выражения $3x_1x_2 - x_1 - x_2$.

Решение:

$5x^2 + 4x - 13 = 0$
$x_1 + x_2 = -\frac{b}{a}$
$x_1 + x_2 = -\frac{4}{5}$
$x_1 + x_2 = -0,8$
$x_1x_2 = \frac{c}{a}$
$x_1x_2 = \frac{-13}{5}$
$x_1x_2 = -2,6$
$3x_1x_2 - x_1 - x_2 = 3x_1x_2 - (x_1 + x_2) = 3 * (-2,6) - (-0,8) = -7,8 + 0,8 = -7$
Ответ: −7

721. При каком значении b корни уравнения $x^2 + bx - 17 = 0$ являются противоположными числами? Найдите эти корни.

Решение:

$x^2 + bx - 17 = 0$
$x_1 = -x_2$
$x_1 + x_2 = -b$
$x_1x_2 = -17$
$-x_2x_2 = -17$
$x_2x_2 = 17$
$x_2^2 = 17$
$x_2 = \sqrt{17}$
$x_1 = -\sqrt{17}$
или
$x_2 = -\sqrt{17}$
$x_1 = \sqrt{17}$
$-b = x_1 + x_2 = -\sqrt{17} + \sqrt{17} = 0$
−b = 0
b = 0
Ответ: b = 0, $x_1 = \sqrt{17}, x_2 = -\sqrt{17}$.

722. Применяя теорему, обратную теореме Виета, решите уравнение:
1) $x^2 - 5x + 4 = 0$;
2) $x^2 + 5x + 4 = 0$;
3) $x^2 - 4x - 5 = 0$;
4) $x^2 + 4x - 5 = 0$;
5) $x^2 - 9x + 20 = 0$;
6) $x^2 - x - 2 = 0$;
7) $x^2 + 2x - 8 = 0$;
8) $x^2 - 3x - 18 = 0$.

Решение:

1) $x^2 - 5x + 4 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -(-5) &\\ x_1x_2 = 4 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = 5 &\\ x_1x_2 = 4 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = 1 &\\ x_2 = 4 & \end{cases} \end{equation*}$
Ответ: 1; 4.

2) $x^2 + 5x + 4 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -5 &\\ x_1x_2 = 4 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = -1 &\\ x_2 = -4 & \end{cases} \end{equation*}$
Ответ: −1; −4.

3) $x^2 - 4x - 5 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -(-4) &\\ x_1x_2 = -5 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = 4 &\\ x_1x_2 = -5 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = 5 &\\ x_2 = -1 & \end{cases} \end{equation*}$
Ответ: 5; −1.

4) $x^2 + 4x - 5 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -4 &\\ x_1x_2 = 5 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = -5 &\\ x_2 = 1 & \end{cases} \end{equation*}$
Ответ: −5; 1.

5) $x^2 - 9x + 20 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -(-9) &\\ x_1x_2 = 20 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = 9 &\\ x_1x_2 = 20 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = 4 &\\ x_2 = 5 & \end{cases} \end{equation*}$
Ответ: 4; 5.

6) $x^2 - x - 2 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -(-1) &\\ x_1x_2 = -2 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = 1 &\\ x_1x_2 = -2 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = -1 &\\ x_2 = 2 & \end{cases} \end{equation*}$
Ответ: −1; 2.

7) $x^2 + 2x - 8 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -2 &\\ x_1x_2 = -8 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = -4 &\\ x_2 = 2 & \end{cases} \end{equation*}$
Ответ: −4; 2.

8) $x^2 - 3x - 18 = 0$
$\begin{equation*} \begin{cases} x_1 + x_2 = -b &\\ x_1x_2 = c & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = -(-3) &\\ x_1x_2 = -18 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 + x_2 = 3 &\\ x_1x_2 = -18 & \end{cases} \end{equation*}$
$\begin{equation*} \begin{cases} x_1 = -3 &\\ x_2 = 6 & \end{cases} \end{equation*}$
Ответ: −3; 6.