Ответы к странице 150
610. В одном контейнере было 90 кг яблок, а в другом − 75 кг. После того как из первого контейнера взяли в 3 раза больше яблок, чем из второго, в первом осталось в 2 раза меньше яблок, чем во втором. Сколько килограммов яблок взяли из первого контейнера?
Решение:
Пусть x (кг) − яблок взяли из второго контейнера, тогда:
3x (кг) − яблок взяли из первого контейнера;
90 − 3x (кг) − яблок осталось в первом контейнере;
75 − x (кг) − яблок осталось во втором контейнере.
Так как, в первом осталось в 2 раза меньше яблок, чем во втором, можно составить уравнение:
2(90 − 3x) = 75 − x
180 − 6x = 75 − x
−6x + x = 75 − 180
−5x = −105
x = 21 (кг) − яблок взяли из второго контейнера, тогда:
3x = 3 * 21 = 63 (кг) − яблок взяли из первого контейнера.
Ответ: 63 кг
611. От пристани против течения реки отплыла моторная лодка, собственная скорость которой равна 12 км/ч. Через 40 мин после отправления лодки вышел из строя мотор, и лодку течением реки через 2 ч принесло к пристани. Какова скорость течения реки?
Решение:
Пусть x (км/ч) − скорость течения реки, тогда:
12 − x (км/ч) − скорость лодки против течения;
40 мин = ч = ч
(км) − прошла лодка против течения реки;
2x (км) − прошла лодка по течению.
Так как, против течения и против течения лодка прошла одно и то же расстояние, можно составить уравнение:
|* 3
2 * 12 − 2x − 6x = 0
24 − 8x = 0
8x = 24
x = 3 (км/ч) − скорость течения реки.
Ответ: 3 км/ч
612. Докажите тождество:
1) ;
2) .
Решение:
1)
2)
613. Расстояние между двумя городами легковая машина проезжает за 2 ч, а грузовая − за 3 ч. Через какое время после начала движения они встретятся, если выедут одновременно навстречу друг другу из этих городов?
Решение:
Пусть x (км) − расстояние между городами, тогда:
(км/ч) − скорость легковой машины;
(км/ч) − скорость грузовой машины;
(км/ч) − скорость сближения машин;
(ч) = (ч) = 1 ч 12 мин − время, через которое встретятся машины.
Ответ: через 1 ч 12 минут
614. Решите уравнение:
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) ;
9) .
Решение:
1)
x = 0
Ответ: x = 0
2)
(x − 1)(x + 1) = 0
x − 1 = 0
x = 1
или
x + 1 = 0
x = −1
Ответ: x = −1 и x = 1
3)
x(x + 5) = 0
x = 0
или
x + 5 = 0
x = −5
Ответ: x = −5 и x = 0
4)
(x − 2)(x + 2) = 0
x − 2 = 0
x = 2
или
x + 2 = 0
x = −2
Ответ: x = −2 и x = 2
5)
x(5x − 6) = 0
x = 0
или
5x − 6 = 0
5x = 6
Ответ: x = 0 или
6)
− нет корней
Ответ: нет корней
7) |* 6
x(x − 5) = 0
x = 0
или
x − 5 = 0
x = 5
Ответ: x = 0 и x = 5
8)
x − 1 = 0
x = 1
Ответ: x = 1
9)
3x + 5 = 0
3x = −5
Ответ:
№615. Натуральные числа от 1 до 37 записаны в строку так, что сумма любых первых нескольких чисел делится нацело на следующее за ними число. Какое число записано на третьем месте, если на первом месте записано число 37, а на втором − 1?
Решение:
37 + 1 = 38, значит на третьем месте будет стоять один из делителей числа 38: это 1, 2, 19 или 38.
Число 1 не подходит, так как оно уже записано на втором месте;
число 38 − не подходит, так как оно больше 37.
Выбор между 19 и 2.
Найдем сумму первых 37 натуральных чисел:
1 + 2 + ... + 37 = (1 + 36) + (2 + 35) + ... + (18 + 19) + 37 = 37 * 19.
Так как числа 37 и 19 простые, значит на 37−ом месте может стоять либо 19, либо 37. Но так как, число 37 стоит на первом месте, значит на 37−ом месте стоит число 19.
Значит, на третьем месте стоит 2.
Ответ: 2